228 research outputs found

    The Butterfly Fauna Of The Italian Maritime Alps:Results Of The «Edit» Project

    Get PDF
    Bonelli, Simona, Barbero, Francesca, Casacci, Luca Pietro, Cerrato, Cristiana, Balletto, Emilio (2015): The butterfly fauna of the Italian Maritime Alps: results of the EDIT project. Zoosystema 37 (1): 139-167, DOI: 10.5252/z2015n1a6, URL: http://dx.doi.org/10.5252/z2015n1a

    Sorption-Desorption Behavior of Atrazine on Soils Subjected to Different Organic Long-Term Amendments

    Get PDF
    Sorption of atrazine on soils subjected to three different organic amendments was measured using a batch equilibrium technique. A higher K(F) value (2.20 kg(-1)(mg L(-1))(-)N) was obtained for soil fertilized with compost, which had a higher organic matter (OM) content. A correlation between the K(Foc) values and the percentage of aromatic carbon in OM was observed. The highest K(Foc) value was obtained for the soil with the highest aromatic content. Higher aromatic content results in higher hydrophobicity of OM, and hydrophobic interactions play a key role in binding of atrazine, On the other hand, the soil amended with farmyard manure had a higher content of carboxylic units, which could be responsible for hydrogen bonding between atrazine and OR Dominance of hydrogen bonds compared to hydrophobic interactions can be responsible for the lower desorption capacity observed with the farmyard manure soil, The stronger hydrogen bonding can reduce the leaching of atrazine into drinking water resources and runoff to rivers and other surface waters

    The effect of acupuncture duration on analgesia and peripheral sensory thresholds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acupuncture provides a means of peripheral stimulation for pain relief. However, the detailed neuronal mechanisms by which acupuncture relieves pain are still poorly understood and information regarding optimal treatment settings is still inadequate. Previous studies with a short burst of unilateral electroacupuncture (EA) in the Tendinomuscular Meridians (TMM) treatment model for pain demonstrated a transient dermatomally correlated bilateral analgesic effect with corresponding peripheral modality-specific sensory threshold alterations. However, the impact of EA duration on the analgesic effect in this particular treatment model is unknown. To obtain mechanistically and clinically important information regarding EA analgesia, this current prospective cross-over study assesses the effects of EA duration on analgesia and thermal sensory thresholds in the TMM treatment model.</p> <p>Methods</p> <p>Baseline peripheral sensory thresholds were measured at pre-marked testing sites along the medial aspects (liver and spleen meridians) of bilateral lower extremities. A 5-second hot pain stimulation was delivered to the testing sites and the corresponding pain Visual Analog Scale (VAS) scores were recorded. Three different EA (5Hz) stimulation durations (5, 15 and 30 minutes) were randomly tested at least one week apart. At the last 10 seconds of each EA session, 5 seconds of subject specific HP stimulation was delivered to the testing sites. The corresponding pain and EA VAS scores of de qi sensation (tingling) during and after the EA were recorded. The measurements were repeated immediately, 30 and 60 minutes after the EA stimulation. A four-factor repeat measures ANOVA was used to assess the effect of stimulation duration, time, location (thigh vs. calf) and side (ipsilateral vs. contralateral) of EA on sensory thresholds and HP VAS scores.</p> <p>Results</p> <p>A significant (P < 0.01) main effect of time and location with warm, cold and hot pain thresholds at the four testing sites without any significant difference in duration effect was observed. Similar time and location effects were observed with HP VAS with the longer durations (15 and 30 minutes) of stimulation showed a slower onset, but a more sustainable bilateral analgesic benefit than the short stimulation duration (5 minutes). The 15-minute stimulation resulted in an earlier onset of analgesic effect than the 30-minute stimulation paradigm.</p> <p>Conclusion</p> <p>Longer durations of EA stimulation provide a more sustainable analgesic benefit to hot noxious stimulation than a shorter duration of stimulation. The increase of cold threshold with sustained warm threshold temperature elevation as observed in the longer durations of EA suggests that as the duration of EA lengthened, there is a gradual shifting from an initial predominantly spinally mediated analgesic effect to a supraspinally mediated modulatory mechanism of thermal pain. The 15-minute stimulation appeared to be the optimal setting for treating acute pain in the lower extremities.</p

    Transmitters and Pathways Mediating Inhibition of Spinal Itch-Signaling Neurons by Scratching and Other Counterstimuli

    Get PDF
    Scratching relieves itch, but the underlying neural mechanisms are poorly understood. We presently investigated a role for the inhibitory neurotransmitters GABA and glycine in scratch-evoked inhibition of spinal itch-signaling neurons in a mouse model of chronic dry skin itch. Superficial dorsal horn neurons ipsilateral to hindpaw dry skin treatment exhibited a high level of spontaneous firing that was significantly attenuated by cutaneous scratching, pinch and noxious heat. Scratch-evoked inhibition was nearly abolished by spinal delivery of the glycine antagonist, strychnine, and was markedly attenuated by respective GABAA and GABAB antagonists bicuculline and saclofen. Scratch-evoked inhibition was also significantly attenuated (but not abolished) by interruption of the upper cervical spinal cord, indicating the involvement of both segmental and suprasegmental circuits that engage glycine- and GABA-mediated inhibition of spinal itch-signaling neurons by noxious counterstimuli

    Quantitative and Qualitative Responses to Topical Cold in Healthy Caucasians Show Variance between Individuals but High Test-Retest Reliability.

    Get PDF
    Increased sensitivity to cold may be a predictor of persistent pain, but cold pain threshold is often viewed as unreliable. This study aimed to determine the within-subject reliability and between-subject variance of cold response, measured comprehensively as cold pain threshold plus pain intensity and sensation quality at threshold. A test-retest design was used over three sessions, one day apart. Response to cold was assessed at four sites (thenar eminence, volar forearm, tibialis anterior, plantar foot). Cold pain threshold was measured using a Medoc thermode and standard method of limits. Intensity of pain at threshold was rated using a 10cm visual analogue scale. Quality of sensation at threshold was quantified with indices calculated from subjects' selection of descriptors from a standard McGill Pain Questionnaire. Within-subject reliability for each measure was calculated with intra-class correlation coefficients and between-subject variance was evaluated as group coefficient of variation percentage (CV%). Gender and site comparisons were also made. Forty-five healthy adults participated: 20 male, 25 female; mean age 29 (range 18-56) years. All measures at all four test sites showed high within-subject reliability: cold pain thresholds r = 0.92-0.95; pain rating r = 0.93-0.97; McGill pain quality indices r = 0.87-0.85. In contrast, all measures showed wide between-subject variance (CV% between 51.4% and 92.5%). Upper limb sites were consistently more sensitive than lower limb sites, but equally reliable. Females showed elevated cold pain thresholds, although similar pain intensity and quality to males. Females were also more reliable and showed lower variance for all measures. Thus, although there was clear population variation, response to cold for healthy individuals was found to be highly reliable, whether measured as pain threshold, pain intensity or sensation quality. A comprehensive approach to cold response testing therefore may add validity and improve acceptance of this potentially important pain measure.Thus, although there was clear population variation, response to cold for healthy individuals was found to be highly reliable, whether measured as pain threshold, pain intensity or sensation quality. A comprehensive approach to cold response testing therefore may add validity and improve acceptance of this potentially important pain measure

    Subjects with Knee Osteoarthritis Exhibit Widespread Hyperalgesia to Pressure and Cold

    Get PDF
    Hyperalgesia to mechanical and thermal stimuli are characteristics of a range of disorders such as tennis elbow, whiplash and fibromyalgia. This study evaluated the presence of local and widespread mechanical and thermal hyperalgesia in individuals with knee osteoarthritis, compared to healthy control subjects. Twenty-three subjects with knee osteoarthritis and 23 healthy controls, matched for age, gender and body mass index, were recruited for the study. Volunteers with any additional chronic pain conditions were excluded. Pain thresholds to pressure, cold and heat were tested at the knee, ipsilateral heel and ipsilateral elbow, in randomized order, using standardised methodology. Significant between-groups differences for pressure pain and cold pain thresholds were found with osteoarthritic subjects demonstrating significantly increased sensitivity to both pressure (p = .018) and cold (p = .003) stimuli, compared with controls. A similar pattern of results extended to the pain-free ipsilateral ankle and elbow indicating widespread pressure and cold hyperalgesia. No significant differences were found between groups for heat pain threshold, although correlations showed that subjects with greater sensitivity to pressure pain were also likely to be more sensitive to both cold pain and heat pain. This study found widespread elevated pain thresholds in subjects with painful knee osteoarthritis, suggesting that altered nociceptive system processing may play a role in ongoing arthritic pain for some patients

    Auditory temporal processing in healthy aging: a magnetoencephalographic study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Impaired speech perception is one of the major sequelae of aging. In addition to peripheral hearing loss, central deficits of auditory processing are supposed to contribute to the deterioration of speech perception in older individuals. To test the hypothesis that auditory temporal processing is compromised in aging, auditory evoked magnetic fields were recorded during stimulation with sequences of 4 rapidly recurring speech sounds in 28 healthy individuals aged 20 – 78 years.</p> <p>Results</p> <p>The decrement of the N1m amplitude during rapid auditory stimulation was not significantly different between older and younger adults. The amplitudes of the middle-latency P1m wave and of the long-latency N1m, however, were significantly larger in older than in younger participants.</p> <p>Conclusion</p> <p>The results of the present study do not provide evidence for the hypothesis that auditory temporal processing, as measured by the decrement (short-term habituation) of the major auditory evoked component, the N1m wave, is impaired in aging. The differences between these magnetoencephalographic findings and previously published behavioral data might be explained by differences in the experimental setting between the present study and previous behavioral studies, in terms of speech rate, attention, and masking noise. Significantly larger amplitudes of the P1m and N1m waves suggest that the cortical processing of individual sounds differs between younger and older individuals. This result adds to the growing evidence that brain functions, such as sensory processing, motor control and cognitive processing, can change during healthy aging, presumably due to experience-dependent neuroplastic mechanisms.</p

    The neurochemical basis of human cortical auditory processing: combining proton magnetic resonance spectroscopy and magnetoencephalography

    Get PDF
    BACKGROUND: A combination of magnetoencephalography and proton magnetic resonance spectroscopy was used to correlate the electrophysiology of rapid auditory processing and the neurochemistry of the auditory cortex in 15 healthy adults. To assess rapid auditory processing in the left auditory cortex, the amplitude and decrement of the N1m peak, the major component of the late auditory evoked response, were measured during rapidly successive presentation of acoustic stimuli. We tested the hypothesis that: (i) the amplitude of the N1m response and (ii) its decrement during rapid stimulation are associated with the cortical neurochemistry as determined by proton magnetic resonance spectroscopy. RESULTS: Our results demonstrated a significant association between the concentrations of N-acetylaspartate, a marker of neuronal integrity, and the amplitudes of individual N1m responses. In addition, the concentrations of choline-containing compounds, representing the functional integrity of membranes, were significantly associated with N1m amplitudes. No significant association was found between the concentrations of the glutamate/glutamine pool and the amplitudes of the first N1m. No significant associations were seen between the decrement of the N1m (the relative amplitude of the second N1m peak) and the concentrations of N-acetylaspartate, choline-containing compounds, or the glutamate/glutamine pool. However, there was a trend for higher glutamate/glutamine concentrations in individuals with higher relative N1m amplitude. CONCLUSION: These results suggest that neuronal and membrane functions are important for rapid auditory processing. This investigation provides a first link between the electrophysiology, as recorded by magnetoencephalography, and the neurochemistry, as assessed by proton magnetic resonance spectroscopy, of the auditory cortex

    Thoughts of Death Modulate Psychophysical and Cortical Responses to Threatening Stimuli

    Get PDF
    Existential social psychology studies show that awareness of one's eventual death profoundly influences human cognition and behaviour by inducing defensive reactions against end-of-life related anxiety. Much less is known about the impact of reminders of mortality on brain activity. Therefore we explored whether reminders of mortality influence subjective ratings of intensity and threat of auditory and painful thermal stimuli and the associated electroencephalographic activity. Moreover, we explored whether personality and demographics modulate psychophysical and neural changes related to mortality salience (MS). Following MS induction, a specific increase in ratings of intensity and threat was found for both nociceptive and auditory stimuli. While MS did not have any specific effect on nociceptive and auditory evoked potentials, larger amplitude of theta oscillatory activity related to thermal nociceptive activity was found after thoughts of death were induced. MS thus exerted a top-down modulation on theta electroencephalographic oscillatory amplitude, specifically for brain activity triggered by painful thermal stimuli. This effect was higher in participants reporting higher threat perception, suggesting that inducing a death-related mind-set may have an influence on body-defence related somatosensory representations
    • …
    corecore